Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Chem Zvesti ; 76(10): 6271-6285, 2022.
Article in English | MEDLINE | ID: covidwho-1906503

ABSTRACT

The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The non-structural protein 3 is essential for the replication of transcriptase complex (RTC) and may be regarded as a possible target against SARS-CoV-2. Here, we have used a comprehensive in silico technique to find potent drug molecules against the NSP3 receptor of SARS-CoV-2. Virtual screening of 150 Isatin derivatives taken from PubChem was performed based on their binding affinity estimated by docking simulations, resulting in the selection of 46 ligands having binding energy greater than -7.1 kcal/mol. Moreover, the molecular interactions of the nine best-docked ligands having a binding energy of ≥ -8.5 kcal/mol were analyzed. The molecular interactions showed that the three ligands (S5, S16, and S42) were stabilized by forming hydrogen bonds and other significant interactions. Molecular dynamic simulations were performed to mimic an in vitro protein-like aqueous environment and to check the stability of the best three ligands and NSP3 complexes in an aqueous environment. The binding energy of the S5, S16, and S42 systems obtained from the molecular mechanics Poisson-Boltzmann surface area also favor the system's stability. The MD and MM/PBSA results explore that S5, S16, and S42 are more stable and can be considered more potent drug candidates against COVID-19 disease. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02298-7.

2.
Journal of Computational Biophysics & Chemistry ; : 1, 2022.
Article in English | Academic Search Complete | ID: covidwho-1807528

ABSTRACT

SARS-CoV-2, which causes COVID-19 disease, has proven to be a disastrous pandemic due to its contagious nature. This study has been planned to theoretically explore some antidotes against this virus from natural compounds. A total of 150 compounds from the shogaol class and shogaol derivatives (SDs) have been screened whereas 50 among those, which obeyed Lipinski’s Rule of Five (Ro5), have further been investigated using molecular docking techniques. Furthermore, reference antiviral drug chloroquine (ChQ) and Co-Crystallized inhibitor have also been studied against Mpro of SARS-CoV-2 for comparing the potential of our docked ligands. Surprisingly, 78% of our docked ligands have shown binding energies and inhibition constants lower than ChQ and all ligands showed these values lower than an inhibitor. We further visualized the nature of intermolecular interactions for the best docked six ligands, which have shown higher binding affinities. We have also assessed ADMET properties for three ligands that displayed visually the best intermolecular interactions. Quantum analysis of three selected ligands L4, L5, and L9 has proved their reactivity and kinetic stability. Moreover, molecular dynamic simulations over 60ns have been run for free Mpro and its selected three ligand-protein complexes for evaluating conformational stability and residual flexibility of docked complexes. Furthermore, 100ns the MD simulations have been performed for two ligand complexes L4, L5 (with negative binding free energy), and inhibitor. Available parameters suggest stable complexes for our ligands and could be active drugs against SARS-CoV-2 in near future. [ FROM AUTHOR] Copyright of Journal of Computational Biophysics & Chemistry is the property of World Scientific Publishing Company and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

SELECTION OF CITATIONS
SEARCH DETAIL